BREVET DE TECHNICIEN SUPERIEUR

SESSION 2009

Épreuve de mathématiques

GROUPEMENT B

CODE: MATGRB2

Durée: 2 heures

SPECIALITE	COEFFICIENT
Conception et industrialisation en microtechniques	1,5

Les calculatrices de poche sont autorisées conformément à la circulaire nº 99-186 du 16 novembre 1999. La clarté du raisonnement et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

GROUPEMENT B DES BTS	SESSION 2009
Mathématiques	MATGRB2
Durée : 2 heures	Page : 1/5

EXERCICE 1 (12 points)

Les trois parties de cet exercice peuvent être traitées de façon indépendante.

A. Résolution d'une équation différentielle

On considère l'équation différentielle (E): $y'' - 2y' + y = 8e^x$.

où y est une fonction de la variable réelle x, définie et deux fois dérivable sur R, y ' la fonction dérivée de y et y" sa fonction dérivée seconde.

 $1\,^{\circ}$ Déterminer les solutions définies sur R de l'équation différentielle $(E_0$) :

$$y'' - 2y' + y = 0.$$

2° Soit h la fonction définie sur R par $h(x) = 4 x^2 e^x$.

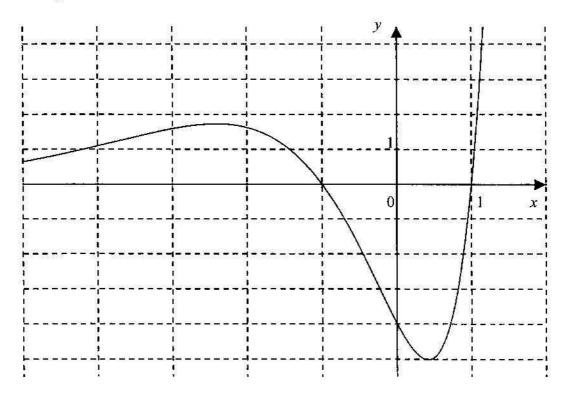
Démontrer que la fonction h est une solution particulière de l'équation différentielle (E).

3° En déduire l'ensemble des solutions de l'équation différentielle (E).

4° Déterminer la solution f de l'équation différentielle (E) qui vérifie les conditions initiales f(0) = -4 et f'(0) = -4.

B. Étude locale d'une fonction

Soit f la fonction définie sur R par $f(x) = (4 x^2 - 4) e^x$. Sa courbe représentative C dans un repère orthogonal est donnée ci-dessous.



GROUPEMENT B DES BTS	SESSION 2009
Mathématiques	MATGRB2
Durée : 2 heures	Page: 2/5

- 1° a) Démontrer que pour tout réel x, $f'(x) = 4(x^2 + 2x 1)e^x$.
 - b) Donner sans justification la valeur exacte et la valeur approchée arrondie à 10^{-2} de l'abscisse de chacun des points de la courbe C où la tangente est parallèle à l'axe des abscisses.
- 2° a) Démontrer que le développement limité, à l'ordre 2, au voisinage de 0, de la fonction f est : $f(x) = -4 4x + 2x^2 + x^2 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.
 - b) Déduire du a) une équation de la tangente T à la courbe C au point d'abscisse 0.
 - c) Étudier la position relative de C et T au voisinage du point d'abscisse 0.

C. Calcul intégral

Dans cette partie, les questions 1° et 2° peuvent être traitées de façon indépendante.

- 1° La fonction f définie au début de la partie B est une solution de l'équation différentielle (E) de la partie A.
- Donc, pour tout x de R, $f(x) = -f''(x) + 2f'(x) + 8e^{x}$.

En déduire une primitive F de la fonction f sur R.

- 2° a) Donner, sans justification, le signe de f(x) sur l'intervalle [0, 1].
 - b) Dans cette question, on admet que la fonction F définie sur R par
 - $F(x) = (4x^2 8x + 4) e^x$ est une primitive de la fonction f.
 - Déduire de ce qui précède l'aire A, en unités d'aire, de la partie du plan limitée par l'axe des abscisses, la courbe C et les droites d'équation x = 0 et x = 1.

GROUPEMENT B DES BTS	SESSION 2009
Mathématiques	MATGRB2
Durée : 2 heures	Page : 3/5

EXERCICE 2 (8 points)

On considère un signal correspondant à la fonction f, définie sur R, périodique de période $T = 2\pi$ et telle que :

$$f(t) = \pi - t$$
 pour $0 \le t < \pi$ et $f(t) = 0$ pour $\pi \le t < 2\pi$.

Soit $S(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(n \omega t) + b_n \sin(n \omega t))$ le développement en série de Fourier associé à la fonction f.

l° Tracer, dans un repère orthogonal, une représentation graphique de la fonction f, pour t appartenant à l'intervalle $[-2\pi, 6\pi[$.

$$2^{\circ}$$
 Montrer que $a_0 = \frac{\pi}{4}$.

 3° Un logiciel de calcul formel a permis d'obtenir les intégrales suivantes, pour n entier non nul :

$$\int_0^{\pi} (\pi - t) \cos(nt) dt = \frac{1 - (-1)^n}{n^2} \text{ et } \int_0^{\pi} (\pi - t) \sin(nt) dt = \frac{\pi}{n}.$$

Ces résultats sont admis et n'ont donc pas à être démontrés.

En déduire les expressions de a_n et de b_n en fonction de l'entier non nul n.

4° Calcul d'une valeur approchée de la valeur efficace de f

Pour tout entier n, on pose $c_n = \sqrt{a_n^2 + b_n^2}$ pour $n \ge 1$ et $c_0 = |a_0|$, où a_n et b_n sont les coefficients de Fourier de la fonction f.

Le tableau suivant donne les valeurs de c_n arrondies à 10^{-4} , pour n variant de 0 à 5.

n	0	1	2	3	4	5
c_n	0,785 4	1,185 4	0,5	0,340 8	0,25	0,201 6

On note E_f la valeur efficace de la fonction f.

La formule de Parseval permet d'écrire :
$$(E_f)^2 = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = c_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} c_n^2$$
.

On obtient une valeur approchée de E_f en ne prenant pas en compte les harmoniques d'ordre supérieur ou égal à 6. On obtient alors une valeur approchée P du carré de la valeur efficace de f par la formule : $P = c_0^2 + \frac{1}{2} \sum_{n=1}^{n=5} c_n^2$.

Donner, en utilisant le tableau ci-dessus, une approximation décimale à 10^{-4} près de P.

GROUPEMENT B DES BTS	SESSION 2009
Mathématiques	MATGRB2
Durée : 2 heures	Page: 4/5

5° Comparaison avec la valeur exacte de la valeur efficace de f

a) On rappelle que
$$(E_f)^2 = \frac{1}{2\pi} \int_0^{2\pi} f^2(t) dt$$
.

Montrer que
$$(E_f)^2 = \frac{\pi^2}{6}$$
.

b) Déduire des questions précédentes une valeur approchée arrondie à 10^{-3} du rapport $\frac{P}{\left(E_{f}\right)^{2}}$.

On peut observer ici que $\frac{P}{(E_f)^2}$ est inférieur à 0,95. On constate ainsi que l'abandon des harmoniques d'ordre supérieur à 5 ne fournit pas une excellente approximation de $(E_f)^2$ dans le cas où, comme ici, les valeurs de c_n ne décroissent pas rapidement.

Formulaire pour les séries de Fourier

f: fonction périodique de période T.

Développement en série de Fourier :

$$s(t) = a_0 + \sum_{n=1}^{+\infty} \left(a_n \cos(n \omega t) + b_n \sin(n \omega t) \right) = \sum_{-\infty}^{+\infty} c_k e^{ik\omega t}, \ (n \in \mathbb{N}^*, k \in \mathbb{Z}).$$

$$a_0 = \frac{1}{T} \int_a^{a+T} f(t) dt$$
; $a_n = \frac{2}{T} \int_a^{a+T} f(t) \cos(n \omega t) dt$;

$$b_n = \frac{2}{T} \int_a^{a+T} f(t) \sin(n \omega t) dt.$$

$$c_k = \frac{1}{T} \int_a^{a+T} f\left(t\right) \, \mathrm{e}^{-\mathrm{i} \, k \, \omega \, t} \, \mathrm{d}t \, \left(\, k \in \mathrm{Z}\right) \; \; ; \quad c_0 = a_0 \; \; ;$$

$$\frac{a_n - ib_n}{2} = c_n$$
; $\frac{a_n + ib_n}{2} = c_{-n} \ (n \in \mathbb{N}^*).$

GROUPEMENT B DES BTS	SESSION 2009
Mathématiques	MATGRB2
Durée : 2 heures	Page : 5/5