FORMULAIRE DE MATHÉMATIQUES

BTS: groupement B

AÉRONAUTIQUE AMÉNAGEMENT FINITION APRÈS-VENTE AUTOMOBILE ASSISTANCE TECHNIQUE D'INGÉNIEUR **BÂTIMENT** CONCEPTION ET RÉALISATION DE CARROSSERIES **CONSTRUCTION NAVALE** CONSTRUCTIONS MÉTALLIQUES **DOMOTIQUE** ENVELOPPE DU BÂTIMENT : FAÇADES-ÉTANCHÉITÉ ÉTUDES ET ÉCONOMIE DE LA CONSTRUCTION FLUIDE-ÉNERGIE-ENVIRONNEMENT GÉOLOGIE APPLIQUÉE INDUSTRIALISATION DES PRODUITS MÉCANIQUES MAINTENANCE ET APRÈS-VENTE DES ENGINS DE TRAVAUX PUBLICS ET DE MANUTENTION MAINTENANCE INDUSTRIELLE MÉCANIQUE ET AUTOMATISMES INDUSTRIELS MOTEURS À COMBUSTION INTERNE TRAITEMENT DES MATÉRIAUX TRAVAUX PUBLICS

Plusieurs résultats figurant dans ce formulaire ne sont pas au programme de TOUTES les spécialités de BTS appartenant à ce groupement.

1. RELATIONS FONCTIONNELLES

$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a+b) = \exp a \times \exp b$$

$$a^t = e^{t \ln a}, \text{ où } a > 0$$

$$t^{\alpha} = e^{\alpha \ln t}, \text{ où } t > 0$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(2t) = 2\cos^2 t - 1 = 1 - 2\sin^2 t$$

$$\sin(2t) = 2\sin t \cos t$$

$$\sin p + \sin q = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin \frac{p-q}{2}\cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2\cos \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin \frac{p+q}{2}\sin \frac{p-q}{2}$$

$$\cos a \cos b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right), \text{ ch } t = \frac{1}{2} \left(e^{t} + e^{-t} \right)$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right), \text{ sh } t = \frac{1}{2} \left(e^{t} - e^{-t} \right)$$

$$e^{at} = e^{\alpha t} \left(\cos(\beta t) + i \sin(\beta t) \right), \text{ où } a = \alpha + i\beta$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\lim_{t \to +\infty} \ln t = +\infty ;$$

$$\lim_{t \to +\infty} e^{t} = +\infty ;$$

$$\lim_{t \to +\infty} e^{t} = 0 ;$$

$$\sin \alpha > 0, \lim_{t \to +\infty} t^{\alpha} = +\infty ; \quad \sin \alpha < 0, \lim_{t \to +\infty} t^{\alpha} = 0$$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$
Si $\alpha > 0$, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\lim_{t \to 0} \ln t = -\infty$$
Si $\alpha > 0$, $\lim_{t \to 0} t^{\alpha} = 0$; si $\alpha < 0$, $\lim_{t \to 0} t^{\alpha} = +\infty$
Si $\alpha > 0$, $\lim_{t \to 0} t^{\alpha} \ln t = 0$.

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
$\ln t$	$\frac{1}{t}$	ch t	sh <i>t</i>
e^t	e^{t}	sh t	ch t
$t^{\alpha} \ (\alpha \in \mathbb{R})$	$\alpha t^{\alpha-1}$	Arc sin t	$\frac{1}{\sqrt{1+2}}$
$\sin t$	cos t		$\sqrt{1-t}$
cos t	$-\sin t$	Arc tan t	$\frac{1}{1+t^2}$
tan <i>t</i>	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$	$e^{at} (a \in I, \mathbb{C})$	ae ^{at}

Opérations

$$(u+v)' = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v+uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}$$

$$(v \circ u)' = (v' \circ u)u'$$

$$\left(e^{u}\right)'=e^{u}u$$

 $(v \circ u)' = (v' \circ u)u'$ $(e^u)' = e^u u'$ $(\ln u)' = \frac{u'}{u}, \ u \text{ à valeurs strictement positives}$

$$\left(u^{\alpha}\right)' = \alpha u^{\alpha-1} u'$$

c) Calcul intégral

Valeur moyenne de f sur [a, b]:

$$\frac{1}{b-a} \int_{a}^{b} f(t) \, \mathrm{d}t$$

Intégration par parties :

$$\int_a^b u(t) \ v'(t) \ \mathrm{d}t = \left[u(t) v(t) \right]_a^b - \int_a^b u'(t) \ v(t) \ \mathrm{d}t$$

d) Développements limités

$$e^{t} = 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + t^{n} \varepsilon (t)$$

$$\sin t = \frac{t}{1!} - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} + \dots + (-1)^{p} \frac{t^{2p+1}}{(2p+1)!} + t^{2p} \cdot \frac{t^{2p}}{(2p+1)!} +$$

$$\sin t = \frac{t}{1!} - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + (-1)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon (t)$$

$$\cos t = 1 - \frac{t^2}{1!} + \frac{t^4}{1!} + \dots + (-1)^p \frac{t^{2p}}{1!} + t^{2p} \varepsilon (t)$$

$$\cos t = 1 - \frac{t}{2!} + \frac{t}{4!} + \dots + (-1)^p \frac{t^{-1}}{(2p)!} + t^{2p} \varepsilon (t)$$
$$(1+t)^{\alpha} = 1 + \frac{\alpha}{1!} t + \frac{\alpha(\alpha-1)}{2!} t^2 + \dots + \frac{\alpha(\alpha-1) \cdot \dots (\alpha-n+1)}{n!} t^n + t^n \varepsilon (t)$$

e) Equations différentielles

Équations	Solutions sur un intervalle I
a(t) x' + b(t) x = 0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$
ax'' + bx' + cx = 0	Si $\Delta > 0$, $f(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où r_1 et r_2 sont les racines de l'équation caractéristique
équation caractéristique :	Si $\Delta = 0$, $f(t) = (\lambda t + \mu)e^{rt}$ où r est la racine double de l'équation caractéristique
$ar^2 + br + c = 0$	Si $\Delta < 0$, $f(t) = [\lambda \cos(\beta t) + \mu \sin(\beta t)]e^{\alpha t}$ où $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont les racines
de discriminant ⊿	complexes conjuguées de l'équation caractéristique.

3. PROBABILITES

$$P(X=k) = C_n^k p^k q^{n-k}$$

$$P(X = k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

$$\sigma(X) = \sqrt{npq}$$

b) Loi de Poisson

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

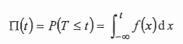
$$V(X) = \lambda$$

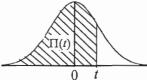
k λ	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	0,0000	0,0000

$\frac{\lambda}{k}$	1	1.5	2	3	4	5	6	7	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.140	0.089	0.052	0.029	0.015	0.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	0.073	0.095
13					0.000	0.001	0.005	0.014	0.030	0.050	0.073
14						0.000	0.002	0.007	0.017	0.032	0.052
15							0.001	0.003	0.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0.006	0.013
18								0,000	0.001	0.003	0.007
19	,								0.000	0.001	0.004
20										0.001	0.002
21										0,000	0.001
22											0.000

c) Loi exponentielle

Fonction de fiabilité :
$$R(t) = e^{-\lambda t}$$


$$E(X) = \frac{1}{\lambda}$$
 (M.T.B.F.) $\sigma(X) = \frac{1}{\lambda}$


$$\sigma(X) = \frac{1}{1}$$

d) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

						0_				
t	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,547 8	0,551 7	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,594 8	0,598 7	0,602 6	0,606 4	0,610 3	0,6141
0,3	0,617 9	0,621 7	0,625 5	0,629 3	0,633 1	0,636 8	0,640 6	0,644 3	0,648 0	0,651 7
0,4	0,655 4	0,659 1	0,662 8	0,666 4	0,670 0	0,673 6	0,677 2	0,680 8	0,684 4	0,687 9
0,5	0,691 5	0,695 0	0,698 5	0,701 9	0,705 4	0,708 8	0,712 3	0,715 7	0,719 0	0,722 4
0,6	0,725 7	0,729 0	0,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,7	0,758 0	0,761 1	0,764 2	0,767 3	0,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2
0,8	0,788 1	0,791 0	0,793 9	0,796 7	0,799 5	0,802 3	0,805 1	0,807 8	0,810 6	0,813 3
0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9
1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1
1,1	0,864 3	0,866 5	0,868 6	0,870 8	0,872 9	0,874 9	0,877 0	0,879 0	0,881 0	0,883 0
1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5
1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,9147	0,916 2	0,917 7
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,931 9
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1
1,6	0,945 2	0,946 3	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
1,8	0,964 1	0,964 9	0,965 6	0,966 4	0,967 1	0,967 8	0,968 6	0,969 3	0,969 9	0,970 6
1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,976 1	0,9767
2,0	0,977 2	0,977 9	0,978 3	0,978 8	0,979 3	0,979 8	0,980 3	0,980 8	0,981 2	0,981 7
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7
2,2	0,986 1	0,986 4	0,986 8	0,987 1	0,987 5	0,987 8	0,988 1	0,988 4	0,988 7	0,989 0
2,3	0,989 3	0,989 6	0,989 8	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,991 3	0,991 6
2,4	0,991 8	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,5	0,993 8	0,994 0	0,994 1	0,994 3	0,994 5	0,994 6	0,994 8	0,994 9	0,995 1	0,995 2
2,6	0,995 3	0,995 5	0,995 6	0,995 7	0,995 9	0,996 0	0,996 1	0,996 2	0,996 3	0,996 4
2,7	0,996 5	0,996 6	0,996 7	0,996 8	0,996 9	0,997 0	0,997 1	0,997 2	0,997 3	0,997 4
2,8	0,997 4	0,997 5	0,997 6	0,997 7	0,9977	0,997 8	0,997 9	0,997 9	0,998 0	0,998 1
2,9	0,998 1	0,998 2	0,998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE t

t	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,8	4,0	4,5
$\Pi(t)$	0,998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 841	0,999 928	0,999 968	0,999 997

Nota: $\Pi(-t) = 1 - \Pi(t)$