INSTRUCTIONS TO CANDIDATES

• Write your session number in the boxes above.
• Do not open this examination paper until instructed to do so.
• A graphic display calculator is required for this paper.
• Section A: answer all of Section A in the spaces provided.
• Section B: answer all of Section B on the answer sheets provided. Write your session number on each answer sheet, and attach them to this examination paper and your cover sheet using the tag provided.
• At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
• Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 5]

Let \(A = \begin{pmatrix} 1 & 2 & -3 \\ -1 & -1 & 4 \\ 2 & 4 & -3 \end{pmatrix} \) and \(B = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \).

(a) Write down \(A^{-1} \). [2 marks]

(b) Solve \(AX = B \). [3 marks]
2. [Maximum mark: 6]

Consider the arithmetic sequence 3, 9, 15, ..., 1353.

(a) Write down the common difference. [1 mark]

(b) Find the number of terms in the sequence. [3 marks]

(c) Find the sum of the sequence. [2 marks]
3. \([\text{Maximum mark: 7}]\)

Let \(f(x) = x \cos x \), for \(0 \leq x \leq 6 \).

(a) Find \(f'(x) \). \([3 \text{ marks}]\)

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

(b) On the grid below, sketch the graph of \(y = f'(x) \). \([4 \text{ marks}]\)

\[\begin{array}{|c|c|c|c|c|c|c|}
\hline
x & -1 & 0 & 1 & 2 & 3 & 4 \\
\hline
y & & & & & & \\
\hline
\end{array}\]
4. [Maximum mark: 6]

The following frequency distribution of marks has mean 4.5.

<table>
<thead>
<tr>
<th>Mark</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>x</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

(a) Find the value of x. [4 marks]

(b) Write down the standard deviation. [2 marks]
5. [Maximum mark: 7]

The graph of \(y = p \cos qx + r \), for \(-5 \leq x \leq 14\), is shown below.

There is a minimum point at \((0, -3)\) and a maximum point at \((4, 7)\).

(a) Find the value of

(i) \(p \);

(ii) \(q \);

(iii) \(r \). [6 marks]

(b) The equation \(y = k \) has exactly two solutions. Write down the value of \(k \). [1 mark]
6. [Maximum mark: 7]

The acceleration, \(a \text{ m s}^{-2} \), of a particle at time \(t \) seconds is given by

\[
a = \frac{1}{t} + 3\sin 2t, \text{ for } t \geq 1.
\]

The particle is at rest when \(t = 1 \).

Find the velocity of the particle when \(t = 5 \).

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
7. [Maximum mark: 7]

Evan likes to play two games of chance, A and B.

For game A, the probability that Evan wins is 0.9. He plays game A seven times.

(a) Find the probability that he wins exactly four games. [2 marks]

For game B, the probability that Evan wins is \(p \). He plays game B seven times.

(b) Write down an expression, in terms of \(p \), for the probability that he wins exactly four games. [2 marks]

(c) Hence, find the values of \(p \) such that the probability that he wins exactly four games is 0.15. [3 marks]
Do NOT write on this page.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 14]

The diagram below shows a quadrilateral ABCD with obtuse angles $\hat{A}BC$ and $\hat{A}DC$.

![Diagram of quadrilateral ABCD](attachment:diagram.png)

AB = 5 cm, BC = 4 cm, CD = 4 cm, AD = 4 cm, $\angle BAC = 30^\circ$, $\hat{A}BC = x^\circ$, $\hat{A}DC = y^\circ$.

(a) Use the cosine rule to show that $AC = \sqrt{41 - 40\cos x}$.

(b) Use the sine rule in triangle ABC to find another expression for AC.

(c) (i) Hence, find x, giving your answer to two decimal places.

(ii) Find AC.

(d) (i) Find y.

(ii) Hence, or otherwise, find the area of triangle ACD.
Let \(f(x) = Ae^{kx} + 3 \). Part of the graph of \(f \) is shown below.

The \(y \)-intercept is at \((0, 13)\).

(a) Show that \(A = 10 \).

(b) Given that \(f(15) = 3.49 \) (correct to 3 significant figures), find the value of \(k \).

(c) (i) Using your value of \(k \), find \(f'(x) \).

(ii) Hence, explain why \(f \) is a decreasing function.

(iii) Write down the equation of the horizontal asymptote of the graph \(f \).

Let \(g(x) = -x^2 + 12x - 24 \).

(d) Find the area enclosed by the graphs of \(f \) and \(g \).
10. [Maximum mark: 15]

The weights of players in a sports league are normally distributed with a mean of 76.6 kg, (correct to three significant figures). It is known that 80% of the players have weights between 68 kg and 82 kg. The probability that a player weighs less than 68 kg is 0.05.

(a) Find the probability that a player weighs more than 82 kg.

(b) (i) Write down the standardized value, \(z\), for 68 kg.

(ii) Hence, find the standard deviation of weights.

To take part in a tournament, a player’s weight must be within 1.5 standard deviations of the mean.

(c) (i) Find the set of all possible weights of players that take part in the tournament.

(ii) A player is selected at random. Find the probability that the player takes part in the tournament.

Of the players in the league, 25% are women. Of the women, 70% take part in the tournament.

(d) Given that a player selected at random takes part in the tournament, find the probability that the selected player is a woman.